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Abstract 
 

Background:  On-road vehicle emissions models couple emission rates with travel activities.  
Emission rates are derived from data collected using dynamometers.  Dynamometer tests 
measure emissions while a vehicle follows a drive cycle with various speed and modal 
(acceleration, cruise, deceleration, idle) events.  Existing cycle construction methods focus on 
representing real-world activity, without also directly weighing the relationship between activity 
and emissions.  In addition, cycles have traditionally focused on representing complete trips, 
rather than activity on specific roadway links or road types. 
 
Methods:  This paper presents a new cycle construction methodology that offers three 
advantages over traditional approaches.  First, it creates cycles that represent statistically-defined 
speed classes; this groups activities into bins more closely associated with emissions.  Second, it 
defines modal events using speed and event-duration criteria that improve representation of real-
world activity.  Third, it improves upon traditional approaches that create cycles primarily to 
match real-world Speed-Acceleration Frequency Distributions (SAFDs).  The new method 
requires that cycles match real-world SAFDs and distributions of modal events.  This work also 
introduces a new test statistic to assess cycle performance:  the Composite Performance Measure 
(CPM).  The CPM measures how well a cycle matches the SAFD and modal distributions of 
real-world data.  We illustrate these new methods by creating arterial roadway cycles.      
 
Results:  Arterial driving can be represented by four activity clusters:  < 12.5 mph, 12.5 - 32.5 
mph, 32.5 - 47.5 mph, and > 47.5 mph.  Cycles representing the two mid-range speed activity 
clusters performed equally well regardless of whether they were created with the new techniques 
or with a traditional approach.  However, cycles created for the lowest and highest speed activity 
clusters performed better at representing real-world data when they were constructed to match 
SAFD and mode distributions, rather than SAFD metrics alone.  The percentage difference 
between observed and cycle-constructed mean accelerations was a factor of two to three smaller 
for the low- and high-speed cycles created using SAFD and mode distribution metrics.
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1. Introduction 
 
In the United States, models such as EMFAC (in California) and MOBILE (in the rest of 
the U.S.) estimate on-road vehicle emissions by coupling emission rates with 
corresponding activities.  Mobile emission rates are generally developed from 
dynamometer tests using driving cycles such as Federal Test Procedure (FTP) cycles or 
the California Unified Cycle (Austin et al. 1995).  Consequently, the representativeness 
of driving cycles is crucial for emission assessment. 
 
A driving cycle is a speed-time profile designed to represent a real-world driving pattern.  
Cycle length ranges from one or two minutes to 30 minutes or more; duration is typically 
limited to reduce per-vehicle test costs.  Thus, cycle development efforts are challenged 
to mimic real-world behavior using limited duration activities.  During a dynamometer 
test, a vehicle follows a specific speed-time trace while emissions and energy 
consumption are recorded.  Using dynamometer data, emission rates or speed correction 
factors are then developed for the particular driving activity under study and existing 
emissions models incorporate the findings to represent emissions under different driving 
conditions.  
 
Most cycle construction methods, meaning those traditionally used to support 
development of the EMFAC and MOBILE emissions models, have focused on 
representing real-world driving activity, rather than real-world emissions.  This paper 
presents a new cycle construction methodology designed to differentiate driving patterns 
based on their emissions, and to represent driving activity and associated emissions from 
a modal perspective.   

2. A Review of Basic Methodologies of Cycle Construction 
 
In general, cycle construction methods typically include the following steps: (1) 
collecting real world driving data, (2) segmenting the driving data, (3) constructing cycles, 
and (4) evaluating and selecting the final cycle (Andre 2004).  Depending on the type of 
driving activity that is being using to construct the cycle, existing cycle construction 
methodologies for light-duty vehicles can be generalized into four types: micro-trip cycle 
construction; trip segment-based cycle construction, cycle construction based on pattern 
classification, and modal cycle construction. 
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2.1 Micro-trip based cycle construction 
One approach to create driving cycles is to chain “micro-trips,” which are defined as the 
driving activity between adjacent stops, including the leading period of idle (Austin et al. 
1993).  Examples include the Sydney cycle (Kent et al. 1978), the Melbourne Peak Cycle 
(Watson et al. 1982), the Unified Cycles (Austin et al. 1993), the Unified Correction 
Cycles (Gammariello and Long 1996), and the Hong Kong driving cycles (Hung et al. 
2005). 
 
With the micro-trip method, real world activity data, for example, the modal activity of 
numerous vehicles tracked for several minutes each while driving on a freeway or an 
arterial, is divided into micro-trips.  A driving cycle is constructed by chaining 
representative micro-trips with the goal that the cycle closely matches the observed data.  
Micro-trips are usually selected using one of three methods:  random selection; “best 
incremental,” meaning incrementally searching for and adding a micro-trip with specific 
modal characteristics; or a hybrid of both approaches (Austin et al. 1993).  Candidate 
cycles are assessed using parameters that typically include average speed, maximum 
speed, minimum speed, average acceleration, average deceleration and the Speed-
Acceleration Frequency Distribution (SAFD). 
 
The major limitation to the micro-trip based methods is that the micro-trip does not 
differentiate by various types of driving conditions such as roadway type or Level of 
Service (LOS).  As a result, replicating driving activities under a particular driving 
condition is difficult (Andre 2004).  For example, under smooth traffic conditions, a 
vehicle seldom stops and a single micro-trip may cover different road segments or 
different traffic conditions. Use of micro-trip based methods has been limited to 
developing cycles designed to represent a single type of trip or cycles designed to 
replicate region-wide driving conditions. 

2.2 Segment-based cycle construction 
A trip “segment” is obtained by partitioning vehicle speed-time profiles using changes in 
roadway type or LOS, in addition to stops (Carlson and Austin 1997).  Therefore, overall 
vehicle driving activity can be stratified by roadway type or LOS, and cycles can be 
constructed to represent driving activity for specific roadway types and traffic conditions.  
One major application of the segment-based cycle construction method is U.S. 
Environmental Protection Agency (EPA) facility-specific speed correction cycles. 
 
Like the micro-trip based method, trip segments are selected and concatenated using a 
hybrid of random and best-incremental logic.  However, unlike a micro-trip, trip 
segments can start and end at any speed.  Therefore, the chaining of segments requires 
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certain constraints on speed and acceleration between two connecting seconds 
respectively of previous and succeeding micro-tips.  For instance, in constructing EPA’s 
facility specific cycles, the differences in speeds between two connecting seconds was 
required to be within 0.5 mph, and the difference in acceleration within 0.5 mph/sec 
(Carlson and Austin 1997). The “best” cycle is then selected using two primary 
parameters: 1) the sum of difference in SAFD between the test cycle and the target 
population, and 2) the amount of operation occurring in high power mode (Carlson and 
Austin 1997). 
 
The limitation of segment-based cycle construction is that data are stratified strictly from 
a transportation engineering perspective and, consequently, are less related to emissions.  

2.3 Cycle construction with pattern classification 
This type of method has been widely applied in constructing European driving cycles 
(Andre 1996; Andre et al. 1995; Andre and Rapone 2008).  Under this approach, 
“kinematic sequences” (similar to micro-trips) are classified into heterogeneous classes 
using statistical methods.  Also, the approach uses succession probabilities to estimate 
and consider the likelihood that one class of activity precedes or follows a different 
activity class.  Driving cycles are constructed by re-connecting kinematic sequences 
randomly selected from each of the activity classes in accordance with the probability 
and chronology of kinematic sequences (Andre et al. 1995). 
 
In constructing the European Urban Cycles (Andre et al. 1995), kinematic sequences are 
described by 20 variables including duration, idle time and distance throughout the 
sequence; the means, maximums, standard deviations, 20% and 80% percentiles of 
driving modes; and other measures such as instantaneous speed and acceleration, and the 
distance between two accelerations.  Principal Component Analysis (PCA) was applied to 
these 20 variables, followed by cluster analysis on the kinematic sequences. Four 
distinctive classes were identified, respectively representing congested and free-flow 
urban traffic, extra-urban and motorway driving conditions.  
 
Next, a trip was viewed as a series of kinematic sequences. All observed trips were 
classified based on the frequency of sequences in each kinematic sequence class and the 
number of transitions between two classes of kinematic sequences.  Three major types of 
trips were identified, namely urban trips, road trips and motorway trips.  
 
The method was further improved in constructing the European driving cycles under the 
ARTEMIS project (Andre 2004).  To avoid bias due to the varying duration of sequences 
between two stops, speed-time traces were segmented into sequences of homogeneous 
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size rather than partitioned by stops.  Correspondence Analysis using chi-squared 
distance and cluster analysis were applied to classify the sequences into 12 driving 
conditions.  Urban, rural road and motorway cycles were developed based on the 
observed composition of driving conditions.  
 
The limitations of this method are that: 1) the basic units of cycle construction, including 
micro-trip and uniform sequences, are not directly related to emissions, and potentially 
not the best units to be used in defining emission-related driving activity, and 2) the 
classification of sequences is based on the chi-square distance of speed-acceleration joint 
distribution.  Although such classification differentiated the kinematic driving activity, it 
does not necessarily differentiate emissions associated with these activities. 

2.4 Modal cycle construction 
A study by Lin and Niemeier (2002) applied a mode-based cycle construction method, 
where real world driving is viewed as a sequence of acceleration, deceleration, cruise, or 
idle modes.  Studies show that running emissions are related to vehicle modal operation 
in addition to average speed (An et al. 1998; Barth et al. 1996; Fomunung et al. 1999).  
Therefore, for emission estimation purposes, it is logical to analyze and replicate driving 
activities from a modal perspective.  Assuming that the likelihood of a particular modal 
event (e.g., acceleration, cruise, or deceleration) occurring depends only on the mode of 
the previous modal event, driving activities can be modeled as a Markov Chain.   
 
Modal cycle construction comprises four basic steps.  First, the real-world driving data is 
partitioned into snippets of various durations based on acceleration using a maximum 
likelihood estimation (MLE) clustering method (Lin and Niemeier 2002).  Second, the 
snippets are classified into different modal bins, again using the MLE clustering method.  
This time, the clustering variables include average, minimum, and maximum speeds and 
acceleration rates.  The third step creates a transition matrix that contains the succession 
probabilities between different modes.  Finally the cycle is constructed as a Markov chain; 
to add one additional snippet, the next modal bin is predicted based on the modal nature 
of the current snippet and the transition matrix.  One snippet is selected from the 
predicted bin without replacement.  The snippet selection requires that the selected 
snippet best improves the match to the observed SAFD, and that the start speed of the 
snippets matches the end speed of the previous modal snippets with an acceptable 
difference (within  0.2 km/h in Lin’s study).  Snippet selection is repeated until the 
desired cycle length is achieved.  The final driving cycles are selected using a composite 
assessment measure, which integrates parameters such as differences in average speed, 
differences in minimum and maximum speeds, and percentage of idling operation.  
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The shortcomings of the modal approach include: 1) the criterion used to connect the 
snippets is arbitrary, and 2) cycles are constructed for a specific facility and LOS, and the 
number of cycles needed to represent the emission related driving activity are not well 
studied (Lin and Niemeier 2003).  The cycle construction method introduced here builds 
upon the work done by Lin and Niemeier.   
 

3. New Modal Driving Cycle Construction 

3.1 Basic principles 
We improve the ability of driving cycles to represent real world emissions by including 
two major steps in cycle construction process: 1) a dynamic statistical analysis of driving 
patterns and 2) cycle synthesis for specific driving patterns.  
 
The goal of the first step, statistical analysis, is to differentiate real world driving 
activities in terms of their emission-producing capability, and in doing so to determine 
the total number and individual characteristics of desired driving cycles.  To develop an 
improved methodology, we used driving data obtained by chase-vehicles deployed on 
California arterial roadways.  We applied Principal Component Analysis (PCA) and 
cluster analysis to characterize emissions-related driving activity.  The results of these 
analyses then served as a benchmark against which we later assessed the quality of the 
driving cycles we created using our new cycle development methodology.   
 
The objective of the second step, cycle synthesis, is to develop a modal cycle 
construction method which reflects the relationship between emissions and vehicle 
operation modes, and retains the chronology of real-world modal events.  We developed 
our methodology by expanding Lin and Niemeier’s (2002) Markov Chain snippet-
concatenating concept.  Improvements were made to data segmentation and the boundary 
condition in snippet concatenation.  
 
The new method partitions continuous driving activity into different modal bins based on 
both the intensity and duration of speed and acceleration.  With the new data 
segmentation method, we successfully partitioned real-world vehicle speed data (i.e., 
second-by-second traces), into modal snippets of acceleration, deceleration, cruise and 
idle.  These modal snippets constitute basic working units in our cycle construction. 
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3.2 Data source 
For this study, we used target vehicle data collected by the Caltrans/ARB Modeling 
Program (CAMP) using a chase car method. The dataset contains second-by-second 
light-duty vehicle driving data for different types of roadways under different congestion 
levels in four differentially urbanized areas: the Metropolitan Bay Area, Sacramento, 
Stanislaus and the South Coast area. The driving routes were designed to be 
representative not only from the trip perspective (i.e., origin-destination pairs, trip length), 
but also from the facility perspective (e.g., proportion of VMT on freeway or arterials) 
(Eisinger et al. 2006).  
 
To construct new arterial cycles, we used the portion of CAMP data collected on arterials. 
Given the difference in chase vehicle and target vehicle driving profiles (Morey et al. 
2000), we used only target vehicle data to construct arterial cycles.  In total, we have over 
330,000 seconds of observed arterial driving data.1 
 

3.3 Characterizing driving patterns 
 
Overview 
 
The first step of our cycle construction requires that driving activity be classified with 
respect to emissions producing capability.  To do this, we searched for variables that best 
captured the emissions associated with driving activities.  We performed PCA on these 
variables to generate “distance measures” which, through cluster analysis, were used to 
identify unique groups in the observed data.  A “distance measure” refers to the degree to 

                                                 
1 The raw arterial driving data contained a few seconds of abnormally large accelerations and decelerations.  
The largest acceleration recorded was 45 mph/s and largest deceleration 48 mph/s.  Because a vehicle’s 
acceleration performance is constrained by engine power and vehicle weight, such modal operations are 
unlikely to be real.  Existing studies have observed accelerations within a range of +/- 15 mph/s (e.g., 
(Goodwin and Ross 1996; Watson et al. 1982). Moreover, were such extreme values to be included in a 
driving cycle, it would be impossible for a test vehicle to follow the trace containing the aberrant data 
points.  In examining the data, we found that all of the abnormally large values were recorded by a single 
chase vehicle during a specific time period in the Bay Area.  We believe that the observations reflect 
measurement error associated with the specific equipment on that vehicle.  To filter out the equipment error 
outliers, we used the maximum deceleration and acceleration recorded in any other region (+/- 22 mph/s) as 
cut-points.  Observations with greater deceleration or acceleration were treated as outliers and removed 
from the analysis.  These excluded data constitute less than 0.1% of the total arterial target vehicle 
observations.  
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which groups of data differ from one another – as distance measures increase, data 
groups are more distinct from each other.   
 
Existing studies have suggested that the operating mode distribution is a robust measure 
for characterizing driving activities producing emissions (EPA 2005).  To test the 
similarity (or dissimilarity) between regions, facilities, traffic speeds, or chase vehicles, 
we divided the complete second-by-second dataset by region, facility type, average speed 
and chase vehicle designation.  The chase vehicle data did not record roadway link 
average speed.  Average speed is a primary variable important in differentiating 
emissions, but is not the same as the instantaneous speed which is recorded by the chase 
vehicle.  As an alternative, we calculated the average speed of both chase vehicle and 
target vehicles as a surrogate for link average speed.  The average speeds were classified 
into bins starting from 5 mph, 10mph, …, up to 50 mph (Table 1).  

Table 1 Average speed bin definition 

Average Speed Bin 
(mph) 

(Surrogate) Average Speed 
(mph) 

5  0 ~ 7.5  
10 7.5 ~ 12.5 
15 12.5 ~ 17.5 
… ... 
50 > 47.5  

 
 
From each subset of data, we generated the operating mode distribution, that is, the 
distribution of time by operating mode.  Operating modes are defined by instantaneous 
speed, Vehicle Specific Power (VSP) and acceleration (refer to Table 2).  We computed 
VSP for each second of vehicle arterial driving data, using parameters provided by EPA’s 
MOVES model (EPA 2005): 
 

 VSP = (A* v + B * v 2 + C * v 3 + M * v * a ) / M                              

Where, 
 

VSP  =  vehicle specific power in kW/Metric Ton  
v  = the instantaneous speed in meters/second (m/s)  
a   =  the instantaneous acceleration in meters/second2   
A  =  the rolling resistance term in kW⋅s/m  
B  =  the friction term in kW⋅ s2 / m  
C  =  the aerodynamic drag term in kW⋅s3 / m  
M  =  vehicle mass in metric tons (1000 kg) 
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Each second of observed data was assigned to a specific operating mode bin (Table 2). 
 

Table 2 Operating mode bin definitions for MOVES 2004 

Source: (EPA 2004) Table 9-4. 
 

Braking (Bin 0) 
Idle (Bin 1) 

Speed VSP 
0-25mph 25-50mph >50mph 

<0 KW/tonne Bin 11 Bin 21 
0 to 3 Bin 12 Bin 22 
3 to 6 Bin 13 Bin 23 

Bin 33 

6 to 9 Bin 14 Bin 24 
9 to 12 Bin 15 Bin 25 

Bin 35 

12 and greater Bin 16 Bin 26 Bin 36 
 
 
PCA  
 
The operating mode distribution shown in Table 2 is a 17-dimension variable. We applied 
PCA on the operating mode distributions to reduce the data dimensions and to obtain 
distance measures between different operating mode distributions.  The results of the 
PCA showed that the first two principal components explained more than 85% of the 
variance in the data (Figure 1).  The first principal component is positively loaded from 
high-speed operating mode bins while negatively loaded from low-speed operating mode 
bins (Figure 2a).  This implies that the first principal component is associated with the 
mean speed.  The second principal component is positively loaded from both high-speed 
and low-speed operating mode bins while negatively loaded from the medium-speed 
operating mode bins (Figure 2b), suggesting that the second principal component is 
related with the degree that speeds deviate from the mean speed (in other words, the low- 
and high-speed “tails” surrounding mean speeds).  Figure 3 confirms that both principal 
components are strongly related with average speeds.  From principal component plots 
(see Figures 3 and 4) for the first two principal components by location, we saw no 
distinctive pattern associated with a specific region.  In other words, the two main 
principal components do not seem to be strongly representative of any regional effect.  
This suggests that the regional effect, if any, may not be highly influential relative to the 
overall variance of driving patterns.  Based on a scree plot, we elected to use only the 
first two components in the next step, cluster analysis. 
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Figure 1 Principal Component Analysis on the Operating Mode Distribution 
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Figure 2 Principal Component Loadings 
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Figure 3 Plot of Principal Component Against Average Speeds 
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Figure 4 Principal Component Plot 

 
Cluster analysis 
 
The principal component scores for the two principal components (one related to mean 
speed, one related to the deviation in speed) are used to calculate a “distance measure” 
between driving patterns (in other words, as a measure of how distinct different driving 
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patterns are from each other, considering variables that affect emissions).  We applied 
cluster analysis to determine the number of homogeneous groups of driving patterns.  We 
visually compared the results from a number of different clustering methods, including 
the average linkage method, single linkage method, Ward’s Minimum Variance, Centroid 
method, and the mode-based method in SAS as well as the two-step clustering method in 
SPSS2. Based on visual examination, the two-step SPSS clustering method, the Centroid 
method and Average Linkage clustering method provided similar as well as the most 
intuitively reasonable results (see Figure 5 as an illustration of clustering results).  
 
Finally, we used the two-step clustering method in SPSS to determine the number of 
clusters. A major advantage to this method is that the number of clusters can be decided 
based on the Bayesian Information Criteria (BIC) and the increase in distance measure 
(SPSS 2001): 
 

 )log(),(2 nmxLBIC MM +−= θ
)

     

where ),( θ
)

xLM is the maximum log-likelihood for model M, m is the number of 
parameters to be estimated and n is the number of observations.  The second term, 

)log(nm , adds a penalty to increasingly complex models.  
 
The two-step clustering method produced four clusters.  The relationship between 
average speed bin and the cluster membership is shown in Table 3.  It is clear that each 
cluster corresponds well with a specific range of average speeds.  For instance, the first 
cluster represents driving patterns of very slow moving vehicles (under 12.5 mph). The 
second cluster consists mostly of observations with average speeds between 12.5 mph to 
32.5 mph. The third cluster consists of observations with higher average speeds between 
32.5 mph to 47.5 mph. And the last cluster includes observations with the highest arterial 
average speeds (greater than 47.5 mph). Next, we construct cycles using subsets of 
driving data for each cluster.  

                                                 
2 SAS and SPSS are commercially available software packages for completing statistical analyses. 
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Figure 5 Example Driving Pattern Clustering Result Based on the Centroid Method 

Note:  the four clusters shown in Figure 5 are associated with specific average speed classes (see Table 3). 
 
 

Table 3 Cross-table of average speed class and cluster membership 

Number of observations in each cluster* Average 
Speed Class 

Range of Average 
Speed (mph) 

1 2 3 4 
5 0 ~ 7.5 15 0 0 0 
10 7.5 ~ 12.5 19 0 0 0 
15 12.5 ~ 17.5 0 22 0 0 
20 17.5 ~ 22.5 0 22 0 0 
25 22.5 ~ 27.5 0 22 0 0 
30 27.5 ~ 32.5 0 19 1 0 
35 32.5 ~ 37.5 0 2 17 0 
40 37.5 ~ 42.5 0 0 19 0 
45 42.5 ~ 47.5 0 0 11 0 
50 47.5 and above 0 0 1 8 

 *Clusters are sorted based on cluster mean average speed. 
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Table 4  New driving pattern classification for cycle construction 

Class Range of Average Travel Speed (mph) 
1     0 ~ 12.5 
2  12.5 ~ 32.5 
3  32.5 ~ 47.5 
4  47.5 and above 

 
 
As presented in Table 3, our results suggested a four-class classification scheme for 
arterial driving activities.  Our analysis indicates that for emission modeling purposes, 
cycle construction should follow activity classifications that are different from those 
traditionally used in transportation engineering.  For instance, a separate driving cycle 
may be desired to represent driving conditions with an average speed under 12.5 mph.  In 
a later section of this paper, we construct individual driving cycles for each class. 
 

3.4 Markov-chain based cycle construction methodology 
 
Once cycle construction targets have been determined, we implement cycle construction 
in four steps: 1) snippet segmentation 2) transition matrix estimation, 3) cycle synthesis, 
and 4) cycle selection.  
 
Snippet segmentation 
 
First, we partitioned the data into modal events, or “snippets”, that is, acceleration, 
deceleration, cruise or idle modes. These snippets are building blocks in cycle 
construction.  To partition the continuous speed-time profiles into modal events, we used 
a set of parameters, (a1, a2, δ, n), to define the modes. An acceleration event is defined as 
any instantaneous point with acceleration greater than a1 mph/s, or continuous 
observations with instantaneous accelerations greater than a2 mph/s, lasting for n seconds 
or longer, and that accumulate a speed increment greater than δ mph. Likewise, a 
deceleration event is defined as any instant observation with deceleration greater than a1 
mph/s, or continuous observations with instantaneous decelerations smaller than greater 
than a12 mph/s, lasting for n or more seconds, and obtaining a decrease in speed greater 
than δ mph. The remaining observations are classified as cruise or idle events. 
 
To determine the optimal value of classification scheme (a1, a2, δ, n), we want to satisfy 
the following objectives.  First, a modal event should comprise continuous seconds of 
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similar accelerations.  Therefore, θ1, the standard deviation of acceleration of any modal 
event should be small.  This criterion is consistent with that of Lin’s MLE classifying 
method when applied with single clustering variable (e.g., acceleration).  In other words, 
the within-cluster sum of squares is part of the minimization function.  Second, for any 
cruise event, θ2, the difference between the maximum speed and the minimum speed, 
should be small.  Third, for any acceleration event or deceleration event, the absolute 
difference between the maximum speed and the minimum speed (θ3) should be large. 
Fourth, the average acceleration of any cruise event (θ4) should close to zero.  And last, 
because the mode of an individual point (one second of observation) highly depends on 
the neighboring points (seconds), we require that a good classification scheme should 
produce a low fraction of one-second events (θ5). 
 
Therefore, a comprehensive assessment parameter (CAP) for the above objectives is a 
weighted sum,  
 

5544
,

332211 θθθθθ ⋅+⋅+⋅−⋅+⋅= ∑∑∑∑ kkkkkCAP
cruisedecacccruise

   

 
The k1, k2,…, k5 are weights for each objective. In this study, all objectives are weighted 
equally.  We iteratively evaluated different combinations of (a1, a2, δ, n) to obtain the 
smallest value of CAP.  The result showed that the minimum CAP values were obtained 
using a (5, 1, 3, 2) classification scheme, and therefore, we adopted these values in 
snippet segmentation.  In other words, we define acceleration as any instant (a single 
second) with acceleration higher than 5 mph/s, or any continuous observations of 
accelerations larger than 1 mph/s and lasting for 3 seconds or longer, and achieving a 
speed increment of 2 mph or more. Decelerations are defined similarly.  The (5, 1, 3, 2) 
classification scheme allows for representation of the natural variability in driving 
activity that occurs in the real-world.  In particular, the scheme allows for construction of 
cycles that include minor acceleration and deceleration activities during cruise operating 
modes; a sample trace based on this scheme is included in Figure 6. 
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Figure 6 Example of Snippet Segmentation Result 

Note:  cruise and idle events (+ symbol) include minor acceleration and deceleration activity; sustained 
acceleration events are shown as green circles and sustained deceleration events are shown as red triangles.   
 
 
 
To construct driving cycles for each cluster defined in Table 4, driving data were divided 
into four groups based on average speed. We define each cluster as a driving pattern 
“class.”  For each class, the snippet characteristic statistics are presented in Table 5. 

Table 5  Snippet bin characteristics by driving pattern class 

Mode 
num. of 
seconds 

num. of 
snippets 

mean 
speed 

sd. 
Speed 

mean. 
Acc 

sd. 
Acc 

mean 
VSP 

sd. 
VSP 

mean 
duration 

sd. 
duration 

Class 1 (Average speed between 0 ~ 12.5 mph) 
acceleration 7552 1543 12.79 9.78 2.70 1.46 6.75 5.46 4.89 2.75 
deceleration 6294 1328 15.18 9.73 -2.71 1.48 -8.06 7.40 4.74 2.99 
cruise 12797 2090 17.90 12.38 0.01 0.85 0.75 3.52 6.12 8.58 
idle 31138 1018 0.16 0.55 0.01 0.33 -0.01 0.13 30.59 27.59 
Class 2 (Average speed between 12.5 ~ 32.5 mph) 
acceleration 32590 5749 19.20 11.84 2.64 1.51 9.68 6.71 5.67 3.44 
deceleration 27972 4901 22.40 11.99 -2.84 1.56 -11.48 9.80 5.71 3.72 
cruise 90397 9552 32.36 11.38 0.05 0.76 2.23 4.92 9.46 11.86 
idle 44481 2194 0.13 0.45 0.02 0.33 -0.01 0.11 20.27 18.52 
Class 3 (Average speed between 32.5 ~ 47.5 mph) 
acceleration 6887 1313 29.41 12.27 2.33 1.36 13.84 7.59 5.25 3.37 
deceleration 6136 1155 32.26 12.53 -2.75 1.54 -14.70 11.21 5.31 3.66 
cruise 47698 2894 42.68 8.71 0.05 0.67 3.89 5.82 16.48 20.35 
idle 1082 122 0.20 0.52 0.03 0.49 -0.02 0.13 8.87 10.78 
Class 4 (Average speed 47.5 and above) 
acceleration 754 168 40.00 15.08 2.33 1.57 20.46 12.84 4.49 3.59 
deceleration 733 166 44.79 14.15 -2.64 2.04 -17.55 18.55 4.42 3.24 
cruise 15426 464 56.33 7.87 0.04 0.57 7.36 6.52 33.25 66.61 
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Markov chain process and transition matrix  
 
As noted earlier, our cycle construction follows the modal approach where the driving 
process is viewed as a Markov Chain random process (Lin and Niemeier 2002).  One 
basic property of the Markov Chain is that the probability distribution of future states, in 
this case the modal nature of driving activity, depends only on the current state.  In other 
words, the probability of a vehicle accelerating, decelerating or cruising in the next time 
interval depends solely on its current modal state.  The probability of going from one 
modal state i to another state j are called transition probabilities; the matrix containing all 
transition probabilities is the transition matrix. 
 
Let’s assume a vector π, whose elements sum up to one, is the unique solution to 
equation ππ P= , where P  is the transition matrix.  Then π is the stationary distribution 
of the Markov chain.  For a Markov Chain with a stationary distribution, as the chain 
grows, the overall modal distribution will remain unchanged.  Using this property, we can 
assume that cycles constructed by chaining modal snippets one by one using the 
transition matrix will result in a cycle that is representative of the overall modal 
distribution. 
 
To estimate the transition matrix for each driving pattern class, we apply the maximum 
likelihood estimation method developed by Anderson and Goodman (1957) and restated 
in Lee et al. (1970).  For a stationary Markov process, the probability of the ordered 
sequence of states can be written as follows:    

)|()(),...,,( 1010 −∏= tt
t

T XXPXPXXXP       

If we denote nij(t) as the number of individuals for which Xt = sj at time t and Xt-1 = si, the 
probability of a given ordered set of sequences for the n observations can by written as  

ijn
ij

ji
T pXPnXXXP

,
010 )()|,...,,( ∏∝        

where ∝ denotes proportionality and ∑=
t

ijij tnn )( .  By maximizing the above likelihood 

function with respect to the pij’s and subject to the constraint∑ =
j

ijp 1, the maximum 

likelihood estimator of transition probability is, 
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The estimated transition probabilities are presented in Table 6.  For instance, at low speed 
driving conditions, following a deceleration maneuver, the vehicle is 45% likely to be 
engaged in cruising, and 52% likely to accelerate.  For driving pattern class four, vehicles 
travel at high speed and generally do not idle.  As a result, there are only three states in 
such cases.  

Table 6  Snippet Bin Transition Matrix 

Previous Snippet Bin Next Snippet Bin 

 Acceleration Deceleration Cruise Idle  
Class 1 (Average speed between 0 ~ 12.5 mph) 

Acceleration 0 0.06 0.93 0 
Deceleration 0.03 0 0.45 0.52 
Cruise 0.36 0.64 0 0 
Idle 0.99 0.01 0 0 

Class 2 (Average speed between 12.5 ~ 32.5 mph) 
Acceleration 0 0.03 0.97 0 
Deceleration 0.06 0 0.59 0.35 
Cruise 0.39 0.61 0 0 
Idle 1.00 0 0 0 

Class 3 (Average speed between 32.5 ~ 47.5 mph) 
Acceleration 0 0.01 0.99 0 
Deceleration 0.06 0 0.85 0.09 
Cruise 0.42 0.58 0 0 
Idle 0.99 0.01 0 0 

Class 4 (Average speed 47.5 and above)  
Acceleration 0 0.04 0.96  
Deceleration 0.08 0 0.92  
Cruise 0.42 0.58 0  

 
Cycle synthesis 
 
Our cycle synthesizing process relies on a combination of random sampling and the 
Markov chain approach (Figure 7).  Cycle development begins with the use of snippets.  
A snippet is the smallest unit of activity that we track as part of the cycle-building 
process; a snippet can range in duration from one to 100s of seconds, and represents a 
single mode of operation.  Once the real-world data have been partitioned into snippets 
representing various driving modes, the cycle development process joins snippets into a 
driving sequence.  Each sequence is constructed as a single Markov chain (described in 
more detail below).  The length of the driving sequence is determined by the length of the 
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continuous observations gathered in the field when the real-world data were obtained.  
For example, assume a chase vehicle tracked target vehicles and, on average, for each 
vehicle tracked, continuously observed two minutes of arterial driving activity; the cycle 
construction methodology will attempt to create driving sequences that are, on average, 
two minutes in duration.  Sequences are then joined, as necessary, to form a complete 
drive cycle.  A drive cycle may include one or more sequences, depending upon the 
desired length of the cycle.  The method is implemented using the computer 
programming language “R” to generate candidate cycles in batches.   
 
 

 

Figure 7 Cycle Construction Program Flowchart 
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To start the cycle development process, an initial snippet is randomly selected.  Optional 
constraints can be imposed to require that the cycle start from zero or any speed for the 
convenience of dynamometer testing.  Additional snippets are added one by one until the 
length of the current driving sequence has been met.  
 
To add snippets, first, the mode of the next snippet is determined based on the transition 
probability and the current mode.  Then, from the selected mode, the candidate snippet 
pool is defined by the chaining constraint on speed and VSP.  A snippet is randomly 
selected from the candidate snippet pool.  This process continues until the current 
sequence reaches the selected length.  Another snippet is then randomly selected from the 
initial snippet pool to start a new sequence.  This snippet is required to satisfy the 
chaining constraint given the current ending speed and VSP.  The whole process repeats 
until the cycle reaches the desired length (desired cycle length is typically a function of 
dynamometer test cost considerations).  
 
When selecting subsequent snippets from a particular bin, it is necessary that speeds and 
VSPs between two connecting seconds match within a certain range.  We found that the 
95% range of instantaneous change in speeds (i.e., instantaneous acceleration) is much 
wider at lower speeds and narrows as speed increases. As a result, we set the limit of 
instantaneous acceleration as a function of current speed as shown in Figure 8a.  
Specifically: 

acceleration upper bound = max (A + B* v, 1) 
deceleration lower bound = min (C + D* v, 1) 

 
where A, B, C, D are coefficients obtained from regression, and v  is the ending speed of 
current snippet.  The range of instantaneous change in VSP is relatively stable (Figure 
8b).  For simplicity, we therefore impose the chaining constraint that per-second change 
in VSP should not exceed 15 kW/tonne.   
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(a) Instantaneous change in speed   (b) Instantaneous change in VSP 

Figure 8 Range of Instantaneous Change in Speed and VSP 
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The addition of snippets terminates when the cycle length reaches desired values.  For 
each driving pattern (meaning the driving activity that occurred within each of the four 
speed bin classes shown in Table 4), more than 10,000 candidate driving cycles were 
constructed. 
 
Cycle selection 
Conventionally, cycle selection primarily relies on the sum of absolute differences 
between the candidate cycle SAFD and the sample SAFD (Watson et al. 1982; 
Gammariello and Long 1996). This particular parameter is anecdotally referred to as the 
“SAFDdiff”. A smaller SAFDdiff suggests that a cycle is more representative of the 
observed sample. However, based on analyses we conducted, candidate cycles with the 
smallest SAFDdiff are not necessarily most representative in terms of the fraction of time 
spent in each mode. Therefore, we used a combination of SAFDdiff and a similarity 
measure of modal distribution. The SAFDdiff is defined as: 
 
 SAFDdiff = ∑∑ −

a
vava

v
pfr ),(),(       

where,  fr(a, v) is the fraction of time spent at speed v and acceleration a  in the candidate 
cycle and p(a,v) denotes the fraction of time spent at speed v and acceleration a  in the 
observed data. The fraction of time is computed at the resolution of 1 mph for speed and 1 
mph/s for acceleration in our analysis.  
 
The similarity measure for modal distribution, or “Modediff”, is calculated as the sum of 
absolute differences in the distribution of time across all four modes (acceleration, 
deceleration, idle, cruise): 
 
 Modediff = ∑ −

m
mm pfr  

where frm is the fraction of time spent in mode m in the candidate cycle, and pm is the 
fraction of time spent in mode m in the observed data. 
 
Next, we created a statistical measure, which we call the Composite Performance 
Measure (CPM), to assess how well the constructed cycle matched the observed data, 
considering both the SAFD and the time spent in different travel modes. The CPM is the 
weighted sum of SAFDdiff and Mode.diff,  
 
 CPM = SAFDdiff  * w1 + Modediff * w2 
 
where the weights w1 and w2 are the inverse of standard deviations of SAFDdiff and 
Modediff, respectively. 
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The cycle with the smallest value of CPM was selected from each driving pattern class.  
We also examined the cycle with the smallest SAFDdiff measure, to facilitate comparing 
cycle performance based on our new technique (SAFD plus mode considerations), to 
cycle performance based on traditional approaches (SAFD only). Table 7 compares the 
candidate cycle selected based on SAFDdiff (cycle 1) and the cycle selected based on 
CPM (cycle2) for the low-speed driving pattern class. As expected, the cycle with the 
smallest SAFDdiff does not provide as good a fit of modal distribution to the observed 
data as does the new method. In particular, the fraction of time spent in acceleration 
mode is nearly 2% higher than the observed data, while the fraction of time in cruise is 
slightly more than 4% lower. In addition, the cycle with the smallest SAFDdiff 
underperforms the one with smallest CPM in the mean of (positive) acceleration and the 
mean of deceleration.  To emphasize a key point:  the importance of matching both the 
SAFDdiff and the modal distribution is demonstrated by the difference in the acceleration 
characteristics of the cycles (Table 7).  Acceleration events are especially important to 
real-world emissions. 
 

Table 7 Comparison of Class 1 driving cycles selected based on SAFDdiff and on CPM 

 
Observed  

driving  
Cycle 1 

(based on SAFDdiff) 
Cycle 2 

(based on CPM) 
SAFDdiff  0.367  0.371  
CPM  33.57  32.96  
Modediff  0.097  0.058  
Mean Speed (mph) 7.38 6.93 (-6.1%) 6.76 (-8.4%) 
St.Dev. Speed (mph) 10.95 10.58 (-3.4%) 10.16 (-7.3%) 
Mean Acceleration (mph/s) 1.23 1.25 (+1.7%) 1.24 (+0.6%) 
Mean.Deceleration (mph/s) -1.26 -1.42 (+12.9%) -1.20 (-4.1%) 
St.Dev. Acceleration (mph/s) 1.58 1.56 (-1.1%) 1.47 (-6.6%) 
% time in acceleration 13.1 % 15.0 % (+1.9 %) 0.13 (+0.1%) 
% time in deceleration 10.9 % 10.2 % (-0.6 %) 0.11 (-0.1%) 
% time in cruise 22.1 % 17.9 % (-4.2 %) 0.25 (+2.8 %) 
% time in idle 53.9 % 56.8 % (+2.9 %) 0.51 (-2.8 %) 

 
 
 
For driving pattern class 2 and 3, the SAFDdiff measure and the CPM measure lead to 
the same cycle. For driving pattern class 4, we select the cycle with smallest CPM as the 
final cycle. A comparison between the two alternatives is presented in Table 8. The cycle 
selected based on the CPM measure outperforms the one selected based on SAFDdiff 
measure both in terms of modal distribution and speed or acceleration parameters. 
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Table 8 Comparison of Class 4 driving cycles selected based on SAFDdiff and on CPM  

 
Observed 

driving 
Cycle 1 

(based on SAFDdiff) 
Cycle 2 

(based on CPM) 
SAFDdiff  0.449  0.488  
CPM  21.85  21.12  
Modediff  0.102  0.003  
Mean Speed (mph) 55.10 56.81 (+3.1%) 55.15 (+0.1%) 
St.Dev. Speed (mph) 9.56 6.09 (-36.3%) 8.01 (-16.2%) 
Mean Acceleration (mph/s) 0.60 0.43 (-28.0%) 0.53 (-11.5%) 
Mean.Deceleration (mph/s) -0.63 -0.45 (-27.7%) -0.54 (-14.2%) 
St.Dev. Acceleration (mph/s) 1.06 0.60 (-43.8%) 0.86 (-19.3%) 
% time in acceleration 4.5 % 1.7 % (-2.8%) 4.3 % (+0.1%) 
% time in deceleration 4.3 % 2.0 % (-2.3%) 4.3 % (+0.0%) 
% time in cruise 91.2 % 96.3 % (+5.1%) 91.4 % (+0.2%) 

Note that there is no idle mode in the speeds represented by the Class 4 bin. 

 

4. Results 

4.1 Final cycles 
A final cycle was selected from over 10,000 candidate cycles for each driving pattern 
class. Speed-time traces of four final cycles are presented in Figures 9 through 12.  

 

Figure 9 Final Arterial Driving Cycle for Ave. Speed 0 ~ 12.5 mph (driving pattern Class 1) 
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Figure 10 Final Arterial Driving Cycle for Ave. Speed 12.5 ~ 32.5 mph (Class 2) 

 

 

Figure 11 Final Arterial Driving Cycle for Ave. Speed 32.5 ~ 47.5 mph (Class 3) 

  

Figure 12 Final Arterial Driving Cycle for Ave. Speed 12.5 ~ 37.5mph (Class 4) 
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As shown in Figure 9, the lowest speed driving cycle (between 0 to 12.5 mph) contains 
more idling, stop-and-go incidents, and brief acceleration-deceleration maneuvers.  These 
maneuvers are most likely associated with congestion or traffic impedance (e.g., traffic 
lights).  The driving cycle for speeds between 12.5 to 32.5 mph in Figure 10 also contains 
a significant fraction of idling but exhibits a higher cruising speed.  The medium speed 
driving cycle (Figure 11) has only one full stop and two substantial deceleration-
acceleration maneuvers.  The high speed arterial driving cycle in Figure 12 is mostly 
smooth flow occurring at or above 45 mph, with the exception of a single interruption.  
We performed a chi-square (χ2) test on the modal distributions of activity for each cycle 
compared to the observed driving data.  The results supported that cycle modal 
distribution is consistent with the observed driving data.  The cycle length, SAFDdiff and 
chi-square test statistics on the modal distribution are presented in Table 9. 

Table 9 Final Driving Cycle Length, SAFDdiff, and χ 2  test statistics 

Driving Pattern Class 1 2 3 4 
Cycle Duration (sec) 798 829 823 834 
Cycle Length (mile) 1.50 5.18 8.92 12.78 
SAFDdiff 0.371 0.553 0.515 0.488 
CPM 32.96 24.63 23.61 21.12 
χ 2  test          
      χ 2  statistics 3.9487 3.5327 1.3469 0.0404 
      p-value 0.27 0.32 0.72 0.98 
      df 3 3 3 2 

 
 

4.2 Comparison between observed driving characteristics and driving cycles 
We also compared a number of different parameters between the observed driving data 
and the final cycles: average speed, standard deviation of speeds, average positive 
acceleration, average negative acceleration, standard deviation of acceleration, average 
positive VSP, average negative VSP, standard deviation of VSP, positive kinetic energy 
(PKE), and percentages of time (%) spent in each mode, respectively for acceleration, 
deceleration, cruise, and idle.  The comparison is presented in Table 10. 
 
In general, our cycles replicate the modal distribution well. Some statistics, especially the 
mean of negative acceleration and VSP and the standard deviation of the acceleration and 
VSP are smaller than the observed data. This is likely due to the heavier tails observed on 
both ends of the driving activity data. Figures 13 to 16 illustrate the SAFD of the original 
target vehicle data, the SAFD of the final cycles and their difference in 3D plots for the 
four driving pattern classes.   
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Table 10 Comparison of Cycle performance against observed driving data 

 Class 1 Class 2 Class 3 Class 4 

 Obs. Cycle % Diff Obs. Cycle % Diff Obs. Cycle % Diff Obs Cycle % Diff 

Mean speed (mph) 7.4 6.8 -8% 21.4 22.5 5% 39.4 39.0 -1% 55.1 55.2 0% 
Std. speed (mph) 11.0 10.2 -7% 16.2 17.2 6% 11.9 11.3 -6% 9.6 8.0 -16% 
Mean acceleration (mph/s) 1.2 1.2 1% 1.3 1.3 -2% 0.9 0.9 2% 0.6 0.5 -12% 
Mean.deceleration (mph/s) -1.3 -1.2 -4% -1.4 -1.2 -13% -1.0 -0.8 -15% -0.6 -0.5 -14% 
Std. acceleration (mph/s) 1.6 1.5 -7% 1.8 1.6 -10% 1.5 1.2 -15% 1.1 0.9 -19% 
Mean VSP(+) 3.0 2.9 -5% 5.7 5.6 -1% 7.3 7.1 -3% 9.3 8.6 -8% 
Mean VSP(-) -4.4 -3.6 -19% -6.7 -5.8 -14% -7.3 -5.8 -20% -8.1 -5.0 -38% 
Std. VSP 5.1 4.2 -17% 8.3 7.1 -15% 9.5 7.9 -17% 9.8 7.2 -26% 
PKE (mile/hr2) 1.3 1.6 24% 1.0 1.1 6% 0.7 0.8 11% 0.5 0.5 -11% 
Median acceleration 0.7 0.8 21% 0.8 0.8 1% 0.6 0.7 12% 0.4 0.3 -12% 
Median decelaration -0.8 -0.9 16% -0.8 -0.7 -14% -0.6 -0.5 0% -0.4 -0.4 -3% 
Median VSP(+) 0.8 1.0 34% 4.4 4.7 5% 6.2 6.3 2% 8.5 7.8 -8% 
Median VSP(-) -2.1 -2.0 -1% -4.0 -4.0 -2% -4.3 -4.4 3% -4.4 -3.3 -24% 
             
Distribution of time   Diff   Diff   Diff   Diff 
   Acceleration (%) 13.1 13.2 0.1 16.7 15.0 -1.7 11.1 12.4 1.3 4.5 4.3 -0.1 
   Deceleration (%) 10.9 10.8 -0.1 14.3 13.0 -1.3 9.9 9.7 -0.2 4.3 4.3 0.0 
   Cruise (%) 22.1 24.9 2.8 46.3 48.5 2.2 77.2 76.1 -1.1 91.2 91.4 0.2 

   Idle (%) 53.9 51.1 -2.8 22.8 23.5 0.8 1.8 1.8 0.1 0.0 0.0 0.0 
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Figure 13 Cycle SAFD and Observed SAFD for Average Speed between 0 ~ 12.5 mph 

 a) Target (observed)    b) Final cycle 

 
c) Difference 
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Figure 14 Cycle SAFD and Observed SAFD for Average Speed between 12.5 ~ 32.5 mph 

 a) Target (observed)    b) Final cycle 

 
 
c) Difference 
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Figure 15 Cycle SAFD and Observed SAFD for Average Speed between 32.5 ~ 47.5 mph 

 a) Target (observed)    b) Final cycle 

  
c) Difference 
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Figure 16 Cycle SAFD and Observed SAFD for Average Speed 47.5 mph and above 

 a) Target (observed)    b) Final cycle 

 
c) Difference 
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5. Conclusions 
This study presented a systematic driving cycle development method which includes two 
components.  First, it includes a statistical analysis of observed driving patterns to 
identify cycle construction targets.  Instead of using existing traffic classifications that 
were not designated for the purposes of emission estimation, this study suggests that 
target driving patterns should first be defined using emission-related variables.  In this 
study, we classified driving patterns using average speed and VSP bin distribution.  Our 
study showed that a statistical classification result differs from existing approaches that 
rely on LOS classification (i.e., approaches that focus on matching SAFDdiff only, rather 
than also considering modal distributions).  In particular, independent arterial cycles 
should be constructed to represent driving patterns at very low average speeds (below 
12.5 mph), at moderate average speeds (12.5-32.5 mph, and 32.5-47.5 mph) and at very 
high average speeds (above 47.5 mph).  Classification results were used to direct arterial 
cycle construction.   
 
This study also includes a modal approach in cycle development. This method is 
developed from the Markov chain cycle construction method first introduced by Lin and 
Niemeier (2002). First, driving traces were segmented into small modal snippets using 
specific criteria to define driving mode. Then cycles were constructed as a sequence of 
modal snippets. The candidate cycles were assessed by comparing observed and 
constructed data using modal measures in addition to traditional SAFD. The resulting 
cycles replicated the modal distribution very well.   
 
In addition to introducing a new cycle construction approach, this work also introduces a 
new test statistic to assess cycle performance:  the Composite Performance Measure, or 
CPM.  The CPM measures how well a cycle matches the SAFD and modal distributions 
of real-world data.  It can be used to facilitate comparisons of cycles created using the 
methods presented here, as well as comparisons of cycles created using different cycle 
development methods. 
 
Cycles representing the two mid-range speed activity clusters performed equally well 
regardless of whether they were created with the new techniques presented here or with a 
traditional approach.  However, cycles created for the lowest and highest speed activity 
clusters performed better at representing real-world data when they were constructed to 
match SAFD and mode distributions, rather than SAFD metrics alone.  As shown in 
Tables 7 and 8, the percentage difference between observed and cycle-constructed mean 
accelerations was a factor of two to three smaller for the low- and high-speed cycles 
created using SAFD and mode distribution metrics.  Given the relationship between 
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accelerations and emissions, the new technique improves representation of real-world 
activity that affects emissions.   
 
Our method constructs cycles using a combination of random sampling strategies. It is 
designed to replicate the distribution of modal snippets and the transition probability 
between modes. As a result, it is designed to optimize representation of activity 
associated with emissions, rather than to optimize observed-to-estimated driving activity 
in general. The cycle construction process requires a large amount of computing 
resources. In addition, our mode-based perspective evaluates representativeness 
differently than conventional approaches. Greater weight is given to modal distribution 
rather than parameters such as average speed or average acceleration.  
 
Future research could investigate whether alternative evaluation parameters improve 
prediction of activity that affects real-world emissions. In particular, the approach 
presented here could be refined in the future by completing additional analyses using the 
same methodology.  Further analyses could employ additional vehicle-specific data, or 
use of posted speed limits or more accurate measurements of traffic speed to represent 
average speeds. 
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